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We analyze the behavior of an ensemble of inertial particles in a one-dimensional smooth Gaussian velocity
field, in the limit of large inertia, but considering a finite correlation time for the random field. The amplitude
of the concentration fluctuations is characterized by slow decay at large inertia and a much larger correlation
length than that of the random field. The fluctuation structure in velocity space is very different from predic-
tions from short-time correlated random velocity fields, with only few particle pairs crossing at sufficiently
small relative velocity to produce correlations. Concentration fluctuations are associated with depletion of the
relative velocity variance of colliding particles.
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I. INTRODUCTION

Starting from the work of Deutsch �1�, it has been known
for some time now that inertial particles in a random velocity
field undergo clustering phenomena. These behaviors are ob-
served in numerical simulation of turbulence as well �see,
e.g., Ref. �2� and references therein� and are thought to give
an important contribution to coalescence phenomena, e.g., in
the process of rain formation �3,4�. Both in the case of ran-
dom fields and of real turbulence, spatial inhomogeneity of
the statistics, though contributing to particle segregation �5�,
does not appear to be an essential factor.

Random velocity fields with various statistical properties
have been used to model inertial particles in turbulent flows,
both in the presence of gravity �6,7� and in its absence �8,9�.
Simplified models disregarding in part or in total the spatial
structure of the velocity field have been introduced as well
�see, e.g., Ref. �10,11�� to cope with the difficulty of the
analytical treatment of the multiparticle statistics.

In the simplest instance, an inertial particle in a turbulent
flow is characterized by the relaxation time of its velocity
relative to the fluid: The Stokes time �S=2 /9a2� /�0, where a
is the particle radius, � is the ratio of the particle to fluid
density �assumed large� and �0 is the kinematic viscosity of
the fluid �12�. Experimental data �13� and numerical simula-
tions �14� both indicate that clustering is stronger for par-
ticles with �S of the order of the Kolmogorov time scale. This
observation, and the fact that Stokes times for most atmo-
spheric aerosols of interest lie in this range �3� have moti-
vated substantial analytical effort in the small Stokes time
regime, with smooth velocity fields mimicking turbulence at
the Kolmogorov scale �4,15�.

Some analysis has been carried on also for Stokes times in
the turbulent inertial range �8,16,17�, but numerical simula-
tions �18� indicate that concentration fluctuations do not fol-
low simple scaling rules.

Due to the relative ease of analytical treatment, another
regime which attracted attention is that of inertial particles in
a smooth random velocity field, with correlation time �E
much shorter than the geometric scale rv /�u obtained from
the correlation length rv and the amplitude �u of the velocity

field fluctuations �19,20�. However, this is a short-time cor-
related regime that is very different from the situation in
realistic turbulent flows: �E�u /rv=O�1�.

The analysis of random velocity field models has allowed
to identify at least two clustering mechanisms, expected to
be present also in real turbulence. The first one, originally
proposed in Ref. �6�, is preferential concentration of heavy
�light� particles in the strain �vortical� regions of the flow.
This effect has been recently observed also in the case of
particles with very small inertia �22,23�. The second mecha-
nism, already present in one dimension �1D� �21,24�, is that
of the particles catching one another in their motion, as they
slip with respect to the fluid. In the case of smooth velocity
fields, this leads to the formation of caustics in the instanta-
neous concentration field, which, in turn, act as backbones
for the clustering process �25�. The clustering itself is a long-
time process, which can be described in terms of the
Lyapunov exponents of the particle pair dynamics �25,26�.

Focusing on the second mechanism, it appears that caus-
tics formation tends to become maximum for �S /�E,
�E�u /rv→1 �27�, and that, at the same time, clustering be-
comes weaker. For larger �S, one expects that the particles be
scattered by the velocity fluctuations they cross in their mo-
tion �28� as if undergoing Brownian diffusion, resulting in
vanishing particle correlations and in clustering destruction.
It is to be stressed that the interest of this limit is by no
means academic, as particles in turbulent flows for which �S
lies in the inertial range �or above�, will see smaller vortices
precisely in this way.

The purpose of this paper is to understand in detail how
and under which conditions the uncorrelated limit described
in Ref. �28� is achieved. It will appear that clustering destruc-
tion occurs in a very nontrivial way, requiring consideration,
among the other things, of how particle correlations decay at
scales comparable with or above rv. We are going to show
that, provided we are away from the short correlation time
regime �E��u /rv, clustering at �S��E will not be domi-
nated by the small-separation particle pair dynamics �small
with respect to rv� described in Ref. �21�. Particle pairs re-
maining close long enough for a Lyapunov exponent ap-
proach to be appropriate, are still present, but their contribu-

PHYSICAL REVIEW E 76, 066315 �2007�

1539-3755/2007/76�6�/066315�7� ©2007 The American Physical Society066315-1

http://dx.doi.org/10.1103/PhysRevE.76.066315


tion to concentration fluctuations is negligible.
The key mechanism for the destruction of concentration

fluctuations will appear to be that, at large �S /�E and finite
�E�u /rv, only particles with increasingly small relative ve-
locities �but not small enough for a local theory on the lines
of Refs. �21,26� to be valid� have a chance to be correlated.
This is to be contrasted with the picture in Ref. �27�, of
correlation fluctuations disappearing as caustics occupy in
the above limit larger and larger portions of space, and with
the one in Ref. �26� of saturation to the space dimension of
the particle distribution correlation dimension. Neither in
Ref. �26� nor in Ref. �27�, however, was a quantitative pre-
diction on clustering decrease provided.

The present analysis will also allow to show that, for large
�S /�E and rather generic �not too large� values of �u�E /rv,
clustering is associated with smaller typical relative inter-
particle velocities, compared to what would be observed in
the absence of correlations. Thus there are circumstances un-
der which clustering may hinder rather than enhance coales-
cence phenomena.

This paper is organized as follows. The main definitions
and approximations will be presented in Sec. II, following by
and large the notation of Refs. �19–21�. In Sec. III, the pair
particle dynamics will be analyzed in the large �S limit, iden-
tifying the relevant time and velocity scales for clustering. In
Sec. IV, the relation between particle-particle velocity deple-
tion and clustering will be established, and heuristic esti-
mates for the concentration correlation will be obtained,
starting from the Fokker-Planck equation for the distribution
of the relative particle velocity and coordinate. In Sec. V, a
proof for the dominance of slowly approaching particle pairs
in cluster generation will be provided. Section VI contains
the conclusion.

II. MODEL EQUATIONS

Consider an ensemble of inertial particles transported by a
1D zero mean, Gaussian random velocity field u�x , t� with
correlation

�u�x,t�u�0,0�� = �u
2F�t/�E�g�x/rv� , �1�

where g�0�=F�0�=1, the function g is assumed to be smooth
and to have all necessary moments, and �0

	F�t�dt=1. The
particles are immaterial, so that they can cross without inter-
action, and their velocity v is taken to obey the Stokes equa-
tion:

v̇ = �S
−1�− v�t� + u�x�t�,t�� . �2�

Introduce the Stokes and Kubo numbers:

S = �S/�E, K = �u�E/rv �3�

and choose units so that �u=�S=1; therefore,

�E = S−1, rv = �KS�−1. �4�

In the regime S�1, the particle velocity will change little on
the lifetime of a fluid fluctuation and Eq. �2� could be ap-
proximated by a Langevin equation. This is independent of
K, i.e., of the random field being short-time correlated or not.
It is possible to substitute into Eq. �2�:

u�x�t�,t� → �2�p�v��1/2
�t� , �5�

with 
�t� white noise: �
�t�
�0��=��t� and

�p�v� = �
0

	 �u�x�t�,t�u�x�0�,0�	v�
�u2�x�t�,t��

dt �6�

the correlation time of the fluid velocity sampled by a par-
ticle moving at speed v. In the above formula, the averages
are calculated along trajectories, with �.	v� indicating the
condition on v. The average on the trajectory in the denomi-
nator, due precisely to the presence of concentration fluctua-
tions, does not necessarily coincide with the space average
�u2�
�u

2.
From Eq. �1�, we can put �p��E, provided rv /�v��E,

with �v
2 the particle velocity variance. If �p��E, we can

estimate from Eqs. �2� and �5�:

�v
2 � S−1, �7�

which is satisfied if K2�S. Following the same line of rea-
soning �see the Appendix�, it is possible to show that pre-
scription problems in the definition of the white noise arise
only at O�K2 /S�. Notice that K2�S and S�1 imply �
=K /S�1, where � is precisely the force magnitude param-
eter introduced in Ref. �21�. This condition is easily satisfied
unless one chooses to work in a frozen turbulence regime
K�1.

Turning to the relative motion of particle pairs, let us
introduce difference variables

� = v2 − v1, r = x2 − x1,

where 1 and 2 label members of a particle pair, and indicate
u1,2�t�=u�x1,2�t� , t�. In the regime S�1, starting from Eq.
�2�, we can approximate the equation for the relative motion
of particles with the Langevin equation:

�̇ = − � + b�r�
, ṙ = � . �8�

For S�K2, we have for the noise square amplitude B�r�
=b2�r�, from Eq. �1�:

B�r� = �
−	

	

��u2�t� − u1�t���u2�0� − u1�0��	�,r�dt

� 4S−1�1 − g�r/rv�� . �9�

The decoupling of the difference variables �� ,r� from the
center of mass variables 1

2 �x1+x2� and 1
2 �v1+v2� descends

basically from the condition �p�v���E.

III. TWO-PARTICLE DYNAMICS

In order to determine how concentration fluctuations are
generated, we need to understand the particle pair dynamics
at small separations. In the large S limit, we expect that the
velocities of colliding particles be uncorrelated, however,
this condition turns out not to be automatically satisfied. A
condition for the particles to be weakly correlated, despite
being close, is that the Stokes time be much longer than the
time spent at 	r	
rv, so that the velocity of the two particles
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will be the result of many contributions by uncorrelated re-
gions of the fluid �see Fig. 1�. Under these conditions, par-
ticles will move ballistically at scale 	r	
rv, and they will
cross at velocity ���v=S−1/2, after a time ��rv /�v
��K2S�−1/2. The weak correlation condition is therefore
rv /�v��S, i.e.,

� = K2S � 1. �10�

The parameter � is the same as in the theory in Refs. �19,20�,
who considered in detail the small � regime. For ��1, the
time spent by a pair of particles at 	r	
rv before collision,
would be longer than �S, and the particles would have
memory only of that last portion of their history, when they
were at 	r	�rv; therefore, � could not be treated, at the time
of crossing, as a difference of uncorrelated velocities �29�.

Notice that the conditions ��1 and S�1 can be realized
only if K�S−1/2�1, corresponding to a short-time correlated
random velocity field. In this regime, � plays the role of an
effective Stokes number �see in particular Ref. �26��, in
which the place of �E is taken by rv / ��u

2�E�, that is the dif-
fusion time of a �noninertial� tracer across a distance rv. No-
tice also that the condition �S��E ,rv /�u, i.e., KS ,S�1, is
not sufficient by itself to guarantee weak correlation, that in
fact is not fulfilled in the range S−1�K�S−1/2, where ��1.

Back to the large � range, although most particles will be
weakly correlated, those approaching at speed 	�	��v may
stay at 	r	�rv sufficiently long to end up being strongly cor-
related. It is then important to understand whether an effect
like clustering, which depends on pair correlation, is due to
the effect of the many weakly correlated particle pairs, or to
the one of the few strongly correlated ones.

We will answer this question in Sec. V. For the moment,
we identify the important time and velocity scales involved
in the dynamics of slowly approaching particle pairs. We
rescale variables:

t̂ = t/tv, �̂ = �/�v, r̂ = r/rv, �11�

where

tv = �2��−1/3, �v = 21/3�−1/6�v �12�

and rv is given in Eq. �4�. In the new variables, at short
separations, the noise amplitude �9� can be Taylor expanded
and Eq. �8� becomes

�̇̂ = − �2��−1/3�̂ + r̂
, ṙ̂ = �̂ . �13�

Thus tv and �v are in some sense the time and velocity scales
at the correlated scale rv. Notice that the condition for Eq.
�13� to be meaningful as a stochastic differential equation is
tv��E, i.e., again �=K /S�1.

To understand better the meaning of tv and �v, consider
the separation of a pair of particles such that r̂�0�=0 and
	�̂�0�	�1. This is equivalent to looking at the approach of a
particle pair, with conditions imposed on the velocity at the
moment of crossing, rather than at a previous initial time.

In the initial phase, the separating particles will move at
almost constant relative velocity, and r̂� �̂�0�t̂. The variation
of �̂ will be ��̂� �̂�0��0

t̂ t̂
�t̂�dt̂ so that ���̂2�� �̂2�0�t̂3 /3. The
initial phase will last until ��̂� �̂�0�, i.e., until t̂�1, when
r̂� �̂�0�. We then see that �̂�1, i.e., �=�v is the minimum
relative velocity to which the approximation of constant rela-
tive velocity at the correlated scale applies, and tv is the
associated exit time: 	r�tv�	�rv.

The following phase will be determined by the linear na-
ture of Eq. �13�; for t��S, the drift −�2��−1/3�̂ can still be
disregarded, and we expect �̂�t̂� , r̂�t̂�� �̂�0�exp�t̂�. After a
time of the order of −ln �̂�0�, the particles will have moved
apart by r̂�1, i.e., they will be moving out of a correlated
region for u. In this final part of the separation process, Eq.
�13� will cease to be valid, with �̂ obeying instead �̂�
. For
�̂S� t̂�−ln �̂�0�, � will behave like a Brownian motion:
�̂�t̂�� t̂1/2, while r̂ will undergo a Richardson-like diffusion
process: r̂�t̂�� t̂3/2.

In conclusion, we have two groups of particle pairs.
�1� The great majority, for which, at the moment of cross-

ing: ���v; their motion in a correlated region can be ap-
proximated as ballistic and their permanence time is �
��−1/2�S.

�2� A smaller fraction, for which, at the moment of cross-
ing: 	�	
�v, with �v��−1/6�v; their dynamics in a correlated
region is determined by fluctuations of u�x , t� at scale 
rv
and their permanence time grows logarithmically as �→0:
������−1/3 ln��v / 	�	�.

The fact that for ��1, tv��S, has the consequence that
only particles meeting at exponentially small relative veloci-
ties

�� � �v�−1/6 exp�− const �1/3�/�S� ,

will have a chance to stay within a correlated region for a
time ���S. An exponentially low level of molecular diffu-
sion is thus sufficient to destroy these pairs. Even in the
absence of molecular diffusion, however, the relative motion
of these pairs is characterized in the limit � /�S→	 by a
positive Lyapunov exponent �21� and no long-time contribu-
tions to clustering are present. The remaining particle pairs
can be shown not to produce singular contributions to the
two-particle probability density function �PDF� for � �33�.
We can then estimate the fraction of particle pairs staying
close for a time �, i.e., the fraction of particles crossing at
speed �� �provided of course �� tv�, as

S

exit

a b

τ
τ

t

x

FIG. 1. Typical particle pair trajectories for ��1�a� and �
�1�b�. The exit time to the right is �exit��−1/2�S. The small rect-
angles are space-time correlated regions for the fluid, of size rv and
duration �E. The time �S quantifies the particle memory. The particle
approach in �a� is governed by an O��� negative Lyapunov expo-
nent �21�.
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��/�v � �−1/6 exp�− const �1/3�/�S� .

This, again, is exponentially small for ���S and large �,
while the fraction of particle pairs that are merely not ballis-
tic, is the much larger value �v /�v��−1/6.

The situation in the small � regime is very different, as
Eq. �13� leads to instantaneous equilibration of the particle
velocity: ��2 	r���v

2�r /rv�2 and the ballistic particle fraction,
associated with caustics formation, disappears �21,27,30�.
Hence, �v

−2��2 	r=0�→0 and the particles behave for ��1 as
a monodisperse phase �although with velocity not locally
equal to that of the fluid, as it happens instead in the small S
limit �15��. At �→0, all particle pairs are therefore co-
moving.

IV. PAIR DISTRIBUTION

We have seen at the end of Sec. II that in the regime S
�1, S�K2, the difference variables � ,r decouple from the
center of mass ones. This means that at equilibrium, the two-
particle PDF will be in the form

��v1,2,x1,2� = �−1�
v1 + v2

2
����,r� ,

where � is the length of the domain for x1,2. �Unless am-
biguous, we do not use subscripts to identify PDF’s referring
to different stochastic variables�. Multiplying by N2, with N
the total number of particles in the domain � and integrating
over dv1dv2, we obtain the expression for the concentration
correlation:

�n�r�n�0�� = n̄2�� d� ���,r� ª n̄2�1 + f�r�� , �14�

where n̄=N /� is the mean concentration. The quantity f�r�
=���r�−1 gives the strength of the concentration fluctua-
tions.

The difficulty of the problem, compared with the ��1
limit, is the finite width in � of the PDF ��� ,r�. In the �
�1 limit, small r implied small �, a long permanence at that
particular r and the possibility of linearizing the Fokker-
Planck equation in r along the lines of Refs. �21,31�. In our
case this is not possible, and we must consider the full
Fokker-Planck equation, which, from Eqs. �8� and �9�, reads,
at steady state,

��r���,r� − �������,r�� =
1

2
B�r���

2���,r� �15�

�see Ref. �32� for another example of kinetic treatment of the
particle pair statistics in turbulent flows�.

Taking moments of the Fokker-Planck equation �15� al-
lows to draw important conclusions on the connection be-
tween clustering and decrease of the relative velocity vari-
ance. The first two moments of Eq. �15� read

�r���	r���r�� = 0,

�r���2	r���r�� + ��	r���r� = 0, �16�

where ��p 	r���r�=�d� �p��� ,r�. We can impose boundary
conditions to Eq. �16� at r→	, where the solution, corre-

sponding to uncorrelated particles, is known. The first mo-
ment equation tells us that �� 	r���r� is constant; but, at 	r	
�rv correlations are absent; therefore ��r→	�=�−1 and
�� 		�=0; thus �� 	r���r�=0 for all r. Substituting into the
second one, we get �r���2 	r���r��=0, and, using again ��r
→	�=�−1 and ��2 		�ª��

2=2S−1, we get

��
−2��2	r� = �1 + f�r��−1. �17�

In other words, clustering in 1D is necessarily associated
with velocity variance decrease. Notice that this result rests
only on the applicability of the Fokker-Planck equation �15�,
which requires S�1, �=K /S�1, but is otherwise indepen-
dent of �.

An idea of how f�r� goes to zero as �→	 can be obtained
treating the function g in Eq. �9� as a perturbation. This is
motivated by the observation �see previous section� that most
particles spend very little time at distances 	r	�rv, and by
the assumption �verified in Refs. �33�� that the remaining
particles produce only a correction to ��r�. To lowest order,
the particles are therefore independent random walkers with
velocity correlation time �S. A further simplification is ob-
tained assuming that the scale of variation of ��� ,r� remains
�v=S−1/2, as in the unperturbed case. We can then write �
��0+�1, with

�0��,r� = �−1�0��� =
S1/2

2�1/2�
exp
−

S�2

4
� �18�

the solution of Eq. �15� with g�r /rv�, set to zero, and esti-
mate ��r�1�S−1/2�r�1, �����1�− �1 /2�B0��

2�1���1 for some
constant �. Substituting into Eq. �15�,

�S−1/2�r + ���1 � B0g�r/rv��0. �19�

A new length S−1/2, the distance traveled by a particle in a
Stokes time, thus enters the problem. On the scale of S−1/2,
the term g in Eq. �19� behaves like a Dirac delta and we find

�1��,r� � �−1�−1/2 exp�− �S1/2	r	��0��� . �20�

Substituting into Eq. �14� would lead to concentration fluc-
tuations with O��−1/2� variance and O�S−1/2� correlation
length.

V. VELOCITY STRUCTURE

The analysis carried on in the previous section did not
answer the question of which particle pairs are responsible
for the production of the concentration fluctuations at large �.
We are going to show here that concentration fluctuations are
indeed produced by slowly approaching particle pairs.

We prove that the contrary is impossible and assume
therefore that the dominant contribution is due to particles
approaching ballistically at scale rv, which spend a time �
��−1/2�S at that scale. In order to show that the assumption
of dominance of ballistic particles cannot be true, it is suffi-
cient to calculate ��r�=���� ,r�d� as the stationary solution
of the evolution equation
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��r;0� =� dr�d����r;0	��,r�;− T�����,r�;− T� , �21�

where ��� ,r ; t� is a generic nonequilibrium PDF and
��r ;0 	�� ,r� ;−T�
��r�0�=r 	��−T�=�� ,r�−T�=r�� is a tran-
sition PDF for the dynamics described by Eqs. �8� and �9�. If
we take ��T��S and 	r 	 
rv, for most particles �i.e., for
typical values of ��−T��, we will have

	r�− T�	 � 	r�0� − ��− T�T	 � rv, �22�

which descends from the fact that, for T��S and ���v, �
can be approximated as constant. But Eq. �22� tells us that
the dominant contribution to the integral in Eq. �21� for
��r ;0�=��r� �the equilibrium PDF�, is from values of r� for
which ���� ,r� ,−T�=���� ,r����0��� ,r��, where �0 is the
spatially homogeneous PDF of Eq. �18�. For the ballistic
particle pairs �which we are assuming to dominate the statis-
tics�, we can calculate the correction to ballistic motion, writ-
ing r�t�=r0�t�+r1�t�, where, using Eq. �8�,

r0�t� = r�− T� + ��− T��t + T� ,

r1�t� � �
−T

t

� d� b�r0����
��� . �23�

Using Eq. �23�, we can express the transition PDF
��r�0� 	��−T� ,r�−T�� in Eq. �21� in terms of the equivalent
PDF ��r1�0� 	��−T� ,r�−T�� and, using the first of Eq. �23�, in
terms of the conditional PDF ��r1�0� 	��−T� ,r0�0��. Substi-
tuting into Eq. �21�, with ��r ;0�=��r� and ���� ,r� ;−T�
��0��� ,r��=�−1�0����, we obtain

��r� = �−1� dr1�0�d��− T��0���− T��

� 	��r1�0�	��− T�,r0�0��	r0�0�=r−r1�0�, �24�

where use has been made of the relation ��r�
=�dr0�0�dr1�0���r0�0� ,r1�0����r0�0�+r1�0�−r�. We can Tay-
lor expand Eq. �24� around r0�0�=r and we obtain

��r� �
1

2�
�r

2�r1
2�0�	r0�0� = r� ,

where the average is on ��−T� �in terms of �0� and 
���.
Using Eqs. �23� and �9�, we can write

��r� �
1

2�
�r

2��
−T

0

�2d� B�r + ���� ,

where the remaining average is on �; setting r=0, we see
from Eq. �9� that the time integral is dominated by
min�T ,rv / 	� 	 � and we obtain the final result

��r = 0� � �−1rv
−2B�0���rv/	�	�3		�	 � rv/T� , �25�

where the conditional average to right-hand side is peaked at
	�	�rv /T and diverges for � ,T /�S→	.

Thus ballistic pairs do not dominate the dynamics. A cal-
culation taking into account small velocities in a consistent
way �33�, in turn, would lead to convergent expressions for

��� ,r� and allows to show that the contribution to concen-
tration fluctuation is concentrated at ���v��−1/6�v, as
could have been guessed from the analysis in Sec. III.

VI. CONCLUSION

The large Stokes number limit of inertial particles in a
random velocity field is plagued by several subtleties. As
pointed out in Refs. �19,20�, when this limit is reached, the
particle dynamics becomes dependent on a new parameter
defined in terms of the Stokes and Kubo numbers S and K
�see Eq. �3��, namely �=K2S. This becomes apparent in the
case of short-time correlated velocity fields, such as the Kra-
ichnan model �34�, in which K=0, and the role of the Stokes
number is played indeed by � �from Eq. �3�, S is trivially
equal to infinity�. Thus, as pointed out in Ref. �17�, the large
Stokes number asymptotics is really the large � one of Eq.
�10�.

The point of this paper is that, for ��1, the concentration
dynamics is not governed by particle pairs staying close long
enough for a local theory on the lines of Refs. �15,31,21� to
work. While, for small �, the particle phase is locally mono-
disperse in velocity �35�, for ��1, the particle velocity dis-
tribution has finite width and only very few such almost
comoving particle pairs exist �see discussion at the end of
Sec. III�. This property is expected to hold also in more than
1D.

Small relative velocities still appear to be important: As
suggested in Ref. �28�, the particles behave like a gas in
thermodynamic equilibrium, but the correlations originate,
rather than from random collisions, from particle encounters
at small relative velocities, as made clear by the analysis
leading to Eq. �25�. A qualitative argument in Sec. III, con-
firmed by the analysis in Ref. �33�, suggests that the only
particle pairs that have a chance to be correlated are those
travelling at relative velocity ��−1/6�v, that is the minimum
for ballistic relative motion at scale rv. However, these ve-
locities are still O�exp��1/3�� larger than those producing the
long time dynamics needed for clustering in the ��1 limit.

The concentration fluctuation variance appears to decay
rather slowly, like �−1/2 at large � �see Eq. �20��. This decay
rate could be interpreted as the product of the concentration
fraction ��−1/6 of the particles staying close long enough for
their relative velocity to be modified in some way, and their
permanence time ��−1/3 �in units �S� at separation 	r 	 �rv
�see Eq. �12��.

This mechanism of concentration fluctuation production
leads to an important modification of the relative velocity
distribution. As particle clusters are the result of particle
pairs with small relative velocities, the total velocity PDF
will be weighed more to small relative velocities. This results
in a depletion of the relative velocity variance, quantified in
the exact relation �17�, that becomes substantial at ��1. It is
to be ascertained whether this property is preserved in more
than 1D.

Summarizing, we have the following situation: Extrapo-
lating the small � theory of Refs. �21,26,27� to ��1, predicts
that clusters become less and less singular, making eventu-
ally a transition from fractal to space-filling objects. Extrapo-
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lating the opposite way around, the present large � theory
predicts “residual” �not singular� concentration fluctuations,
becoming of the order of the mean concentration as �→1,
due to more and more particle pairs contributing to the fluc-
tuations. It is reasonable to expect that the situation at ��1
will be a combination of the two pictures.

In Refs. �4,27�, it was suggested that clustering is not
central in determining collision rates of relevance, e.g., in
rain formation, as instead are caustics formation and a finite
width of the velocity distribution. If the present picture con-
tinues to hold in more than 1D, it would result in an even
stronger statement, that is, at large �, clustering and modifi-
cations to the velocity distribution work against one another.
This is in some way analogous to the situation at �→0, of
clustering dominance accompanied by caustics disappear-
ance and vanishing of collision rates �21� �see also
Ref. �36��.

Another feature of concentration fluctuations at large �, is
the strong scale separation between their decay length and
the correlation length of the fluid: The first is by a factor
��1/2 larger than the second �see Eq. �20��. The concentra-
tion fluctuation decay length is basically the distance trav-
elled by a particle in a Stokes time and is independent of the
fluid correlation structure. Taking into account also the �−1/2

variance decay, smaller vortices may thus contribute in a non
negligible way to the concentration fluctuations of particles
with Stokes time in the turbulent inertial range.

APPENDIX: FINITE STOKES NUMBER CORRECTIONS

The Langevin approximation to Eq. �2� provided by Eq.
�5� is the lowest order in an expansion in inverse powers of
the Stokes number S. Let us calculate the next order. Given
initial conditions at t=0, Eq. �2� can be integrated to give

v�t� = v�0�e−t + �
0

t

dt�et�−tu�x�t��,t�� ,

and we can write x�t�= x̄�t�+ x̃�t� with

x̄�t� = x�0� + v�0��1 − e−t�

and

x̃�t� = �
0

t

dt��1 − et�−t�u�x�t��,t�� .

Following an approach similar to Ref. �6�, the perturbation
expansion is carried on with respect to x̃ and the first correc-
tion to v�t� is given by, for t��S=1,

v�t� = v�0��1 − t� + �
0

t

dt�u�x̄�t��,t��

+ �
0

t

dt��
0

t�
dt��t� − t��u��x̄�t��,t��u�x̄�t��,t�� ,

�A1�

where u��x , t�=�xu�x , t� and x̄�t��x�0�+v�0�t. Taking t��E,
we find that the second piece to right-hand side of Eq. �A1�
behaves like a Wiener increment; using Eq. �6�,

���
0

t

dt�u�x̄�t��,t���2� = 2�p�v�0��t

and we recover Eq. �5�. Notice that the substitution x�t��
→ x̄�t�� avoids a definition of the noise in implicit form and

�t� in Eq. �5� is automatically defined in the Itô prescription
�37�.

The last term in Eq. �A1� contains a drift correction in the
form, from Eq. �1�:

�u��x̄�t��,t��u�x̄�t��,t���

= − �KS�2v�0��t� − t���u�v�0��t� − t��,t� − t��u�0,0�� .

Equation �A1� takes then the final form, in the limit t→dt:

dv = − �1 + ��v��v dt + �2�p�v��1/2dw , �A2�

where

��v� = �KS�2�
0

	

dt t2�u�vt,t�u�0,0�� �A3�

and w�t�=�0
t 
���d� is the Wiener increment. The noise am-

plitude is defined up to O�dt1/2� terms associated with the
fluctuating part of the second line of Eq. �A1�.

Thus, the first order correction to the Langevin equation
for v�t� is an O�K2 /S� renormalization of the Stokes time
whose sign depends on the profile of the correlation function
for u�x�t� , t�: a strictly positive correlation corresponds to a
decrease of the Stokes time, while oscillations may lead to an
increase. This would lead to a decrease �an increase� of the
drift induced on the particle by an external force.

Notice that the drift correction � provided in Eq. �A3�
does not necessarily coincide with what would be expected
from a change from Stratonovich to Itô prescription �37�. For
instance, adopting for the random field correlation the ex-
plicit expression g�x�=exp�−x2 /2�, would lead to twice what
would be obtained interpreting the substitution x�t��→ x̄�t��
in �0

t dt�u�x̄�t�� , t�� as a Stratonovich to Itô prescription
change. Indicating by dS the Stratonovich differential and
writing b�v�= �2�p�v��1/2:

b�v�dSw =
1

2
b�v�b��v�dt + b�v�dw ,

we find in fact, from Eq. �6�, 1
2b�v�b��v�=− 1

2�v.
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